

복소해석학 학기말 고사

2004. 12.17, 200점 만점

1 (20) State the following theorems precisely:

- a) Morera's theorem
- b) Mittag-Leffler theorem
- c) Weierstrass theorem on infinite product
- d) Riemann mapping theorem

2 (20) Let $u(r, \theta)$ be a harmonic function on $r < 1$ with boundary values $\lim_{r \rightarrow 1} u(r, \theta) = \phi(\theta)$, where ϕ is a piecewise continuous function for $-\pi \leq \theta \leq \pi$.

- a) Express $u(r, \theta)$ as an integral.
- b) Find $u(r, \theta)$, when ϕ is given as

$$\phi(\theta) = \begin{cases} 1, & \text{for } 0 < \theta < \pi \\ -1, & \text{for } -\pi < \theta < 0. \end{cases}$$

3 partial fractions (30)

- a) Show that $\sum_{-\infty}^{\infty} \frac{1}{(z-n)^2}$ converges uniformly on each compact set after omitting finitely many terms.
- b) Show that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{-\infty}^{\infty} \frac{1}{(z-n)^2}$.
- c) Find the (infinite) partial fraction as in the Mittag-Leffler theorem for $\pi \cot(\pi z)$ and justify your answer.

4 (20) Find an entire function and tell its genus:

- a) simple zeros at \sqrt{n} , $n = 1, 2, \dots$ and no other zeros.
- b) simple zeros at $n(\log n)^2$, $n = 1, 2, \dots$ and no other zeros.

5 (10) If $f(z)$ is holomorphic in $|z| \leq 1$ and satisfies $|f| = 1$ on $|z| = 1$, show that $f(z)$ is rational.

6 (10) Show that f is a holomorphic one-to-one mapping of a domain Ω onto a domain $\tilde{\Omega}$ then f is a conformal map, i.e., f' is nowhere zero.

7 (10) Show that $\int_{|\zeta-a|=1} \frac{d\zeta}{(\zeta-a)^k(\zeta-z)} = 0$, for any z with $|z-a| < 1$ and for any integer $k \geq 1$.

뒷면에 계속

8 (30)

a) Prove that the set $A^2(\Omega)$ of L^2 holomorphic functions on Ω is a closed subspace of $L^2(\Omega)$.

b) Find the Bergman kernel for the disk $|z| < R$ of radius R .

c) Evaluate

$$\frac{1}{\pi} \int_{|z|<1} \frac{\sin z dA(z)}{(1-i\bar{z})^2}.$$

9 (20) Let ϕ be a compactly supported complex-valued smooth function on \mathbf{C} .

a) For any locally integrable complex-valued function $K(w)$ on \mathbf{C} and let

$$u(z) = \int_{\mathbf{C}} \phi(z+w) K(w) dA(w).$$

Show that

$$\frac{\partial u}{\partial \bar{z}}(z) = \int_{\mathbf{C}} \frac{\partial \phi}{\partial \bar{z}}(z+w) K(w) dA(w).$$

b) Now define a function u by

$$u(z) = -\frac{1}{\pi} \int_{\mathbf{C}} \frac{\phi(\zeta)}{\zeta - z} dA(\zeta).$$

Show that $\frac{\partial u}{\partial \bar{z}}(z) = \phi(z)$.

10 (30)

a) For $s \in \mathbf{C}$ and $z \in \mathbf{C} \setminus (-\infty, 0]$ define z^s by

$$z^s = e^{s \log z},$$

where \log denotes the principal branch of logarithm. For $\rho > 0$ define C_ρ by $z = \rho e^{i\theta}$, $0 \leq \theta \leq \pi/2$. Show that

$$\lim_{\rho \rightarrow 0^+} \int_{C_\rho} z^s e^{iz} \frac{dz}{z} = \lim_{\rho \rightarrow \infty} \int_{C_\rho} z^s e^{iz} \frac{dz}{z} = 0 \quad (0 < \sigma < 1).$$

Here σ denotes the real part of s .

b) Use the result of a) to show that

$$\lim_{A \rightarrow \infty} \int_0^A x^s \sin x \frac{dx}{x} = \Gamma(s) \sin \frac{\pi s}{2} \quad (0 < \sigma < 1)$$

and

$$\lim_{A \rightarrow \infty} \int_0^A x^s \cos x \frac{dx}{x} = \Gamma(s) \cos \frac{\pi s}{2} \quad (0 < \sigma < 1).$$