복소해석학 학기말 고사

2004. 12.17, 200점 만점

1 (20) State the following theorems precisely:
a) Morera's theorem
b) Mittag-Leffler theorem
c) Weierstrass theorem on infinite product
d) Riemann mapping theorem

2 (20) Let $u(r, \theta)$ be a harmonic function on $r<1$ with boundary values $\lim _{r \rightarrow 1} u(r, \theta)=\phi(\theta)$, where ϕ is a piecewise continuous function for $-\pi \leq \theta \leq \pi$.
a) Express $u(r, \theta)$ as an integral.
b) Find $u(r, \theta)$, when ϕ is given as

$$
\phi(\theta)=\left\{\begin{array}{l}
1, \quad \text { for } 0<\theta<\pi \\
-1, \quad \text { for }-\pi<\theta<0 .
\end{array}\right.
$$

3 partial fractions (30)
a) Show that $\sum_{-\infty}^{\infty} \frac{1}{(z-n)^{2}}$ converges uniformly on each compact set after omitting finitely many terms.
b) Show that $\frac{\pi^{2}}{\sin ^{2} \pi z}=\sum_{-\infty}^{\infty} \frac{1}{(z-n)^{2}}$.
c) Find the (infinite) partial fraction as in the Mittag-Leffler theorem for $\pi \cot (\pi z)$ and justify your answer.

4 (20) Find an entire function and tell its genus:
a) simple zeros at $\sqrt{n}, \quad n=1,2, \cdots$ and no other zeros.
b) simple zeros at $n(\log n)^{2}, \quad n=1,2, \cdots$ and no other zeros.

5 (10) If $f(z)$ is holomorphic in $|z| \leq 1$ and satisfies $|f|=1$ on $|z|=1$, show that $f(z)$ is rational.

6 (10) Show that f is a holomorphic one-to-one mapping of a domain Ω onto a domain $\tilde{\Omega}$ then f is a conformal map, i.e., f^{\prime} is nowhere zero.

7 (10) Show that $\int_{|\zeta-a|=1} \frac{d \zeta}{(\zeta-a)^{k}(\zeta-z)}=0$, for any z with $|z-a|<1$ and for any integer $k \geq 1$. 뒷면에 계속

8 (30)
a) Prove that the set $A^{2}(\Omega)$ of L^{2} holomorphic functions on Ω is a closed subspace of $L^{2}(\Omega)$.
b) Find the Bergman kernel for the disk $|z|<R$ of radius R.
c) Evaluate

$$
\frac{1}{\pi} \int_{|z|<1} \frac{\sin z d A(z)}{(1-i \bar{z})^{2}}
$$

9 (20) Let ϕ be a compactly supported complex-valued smooth function on \mathbf{C}.
a) For any locally integrable complex-valued function $K(w)$ on \mathbf{C} and let

$$
u(z)=\int_{\mathbf{C}} \phi(z+w) K(w) d A(w) .
$$

Show that

$$
\frac{\partial u}{\partial \bar{z}}(z)=\int_{\mathbf{C}} \frac{\partial \phi}{\partial \bar{z}}(z+w) K(w) d A(w) .
$$

b) Now define a function u by

$$
u(z)=-\frac{1}{\pi} \int_{\mathbf{C}} \frac{\phi(\zeta)}{\zeta-z} d A(\zeta)
$$

Show that $\frac{\partial u}{\partial \bar{z}}(z)=\phi(z)$.

10 (30)
a) For $s \in \mathbf{C}$ and $z \in \mathbf{C} \backslash(-\infty, 0]$ define z^{s} by

$$
z^{s}=e^{s \log z}
$$

where \log denotes the principal branch of logarithm. For $\rho>0$ define C_{ρ} by $z=\rho e^{i \theta}$, $0 \leq \theta \leq \pi / 2$. Show that

$$
\lim _{\rho \rightarrow 0+} \int_{C_{\rho}} z^{s} e^{i z} \frac{d z}{z}=\lim _{\rho \rightarrow \infty} \int_{C_{\rho}} z^{s} e^{i z} \frac{d z}{z}=0 \quad(0<\sigma<1) .
$$

Here σ denotes the real part of s.
b) Use the result of a) to show that

$$
\lim _{A \rightarrow \infty} \int_{0}^{A} x^{s} \sin x \frac{d x}{x}=\Gamma(s) \sin \frac{\pi s}{2} \quad(0<\sigma<1)
$$

and

$$
\lim _{A \rightarrow \infty} \int_{0}^{A} x^{s} \cos x \frac{d x}{x}=\Gamma(s) \cos \frac{\pi s}{2} \quad(0<\sigma<1) .
$$

